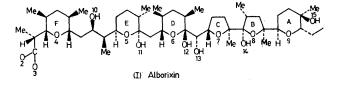
X-Ray Structure of Alborixin, a New Antibiotic Ionophore

By M. Alléaume,* B. Busetta, C. Farges, P. Gachon, A. Kergomard, and T. Staron§

(Laboratoire de Cristallographie et de Physique cristalline associé au C.N.R.S., Université de Bordeaux I, 33405 Talence; ‡Equipe de recherche associée au C.N.R.S. N° 392, Université de Clermont, B.P. 45, 63170; and §Laboratoire des antibiotiques I.N.R.A., Chartres, France)

Summary The structure of a new antibiotic, alborixin, has been determined by X-ray and chemical methods.


FROM cultures of a strain of *Streptomyces albus*, we have isolated a biologically active compound we named alborixin. It shows activity against gram-positive bacteria and antifungal properties which will be described elsewhere.

Alborixin (I) is a monocarboxylic acid, pK_{a} 10.02 (MeOH). Its potassium salt, $C_{48}H_{83}O_{14}K$,¶ is a crystalline solid, m.p. 209—210 °C; ν_{max} (KBr) 3700—3100 (OH) and 1560 cm⁻¹ (CO₂⁻); m/e 922 (M^+). The free acid (I), $C_{48}H_{84}O_{14}$, is an amorphous solid, m.p. 100—115 °C; $[\alpha]_{578}^{39} - 7^{\circ}$ (c 4, acetone). Treatment of (I) by conventional methods afforded the methyl ester $C_{49}H_{86}O_{14}$, m.p. 67—68 °C, a triacetate, $C_{54}H_{90}O_{17}$, m.p. 70—75 °C, and a tetrasilylated compound. The presence of 6 OH groups (alcohols and hemiacetals) was confirmed by the mass spectra of these derivatives. A derivative corresponding to the reduction of 3 hemiacetal rings was obtained by treatment of (I) with NaBH₄. It was oxidised by KIO₄ to give a product with m.p. 55—56 °C, to which we assign structure (III).

The structure of alborixin potassium salt was established by X-ray diffraction analysis on crystals obtained from aqueous EtOH.

Crystal data: $C_{48}H_{83}O_{14}$ -K⁺, M = 922; monoclinic, a = 12.202 (4), b = 16.087 (5), c = 13.471 (5) Å, $\beta = 102.43^{\circ}$,

 $D_{\rm m} = 1.5$; $D_{\rm c} = 1.55$ g cm⁻³; Z = 2; space group $P2_1$. 5334 independent reflections were collected on a Siemens

(III)

computer-controlled automatic diffractometer, with Nifiltered Cu- K_{α} radiation. 4414 non-zero reflections were

¶ Satisfactory elementary analyses have been obtained for all compounds whose molecular formulae are given.

used in the Fourier synthesis and least-squares refinement. The potassium was found from a Patterson synthesis. However, the well known pseudo-mirror problem related to the $P2_1$ space group, the heavy atom, and the high symmetry of the molecule led to the failure of the multisolution direct method generally used for such structures. A method, based on enantiomorph discrimination by the quartets,¹ and a modified tangent formula for phase refinement was then developed.** The structure was refined by least squares to an R value of 0.067.

Alborixin is very similar to X-206 (II). [The addition of 4 methyl groups (on rings B, D, and F) and the exchange of an Me by an OH group do not modify the conformation and the absolute configuration of the backbone]. The backbone 'describes a path similar to that of the seam of a tennis ball,' but the hydrogen bonding and the cation co-ordination are slightly different in alborixin and X-206.

Three intramolecular hydrogen bonds stabilize the conformation: $O(2) \cdots O(15)$, 2.64; $O(3) \cdots O(12)$, 2.58; and $O(11) \cdots O(14)$ 2.78 Å. The potassium is co-ordinated to 8 oxygen atoms in a distorted cubic arrangement. The distances are: $K \cdots O(2)$, 2.89; $K \cdots O(7)$, 3.07; $K \cdots$ O(8), 2.81; K · · · O(9), 2.76; K · · · O(10), 2.71; K · · · O(11), 2.98; K · · · O(12), 2.69; K · · · O(15), 2.76 Å.

Alborixin is a new member of the family of polycyclic polyether monocarboxylic acid antibiotics which now includes monensin, nigericin, X-537A (lasalocid), grisorixin, dianemycin, X-206, A-204A,³ salinomycin,⁴ A-23187,⁵ septamycin,⁶ and lysocellin.⁷

One of us (P.G.) thanks the Institut National de la Santé et de la Recherche Médicale for support of this work.

(Received, 22nd January 1975; Com. 073.)

** Details of the method and its application will be published elsewhere.

- ¹ J. F. Blount and J. W. Westley, Chem. Comm., 1971, 927.
 ³ N. D. Jones, M. O. Chaney, J. W. Chamberlin, R. L. Hamill, and S. Chen, J. Amer. Chem. Soc., 1973, 95, 3399 and references therein.
 ⁴ H. Kinashi, N. Otake, H. Yonehare, J. Sato, and Y. Saito, Tetrahedron Letters, 1973, 4955.
 ⁵ M. O. Chaney, P. V. Demarco, N. D. Jones, and J. L.Occolowitz, J. Amer. Chem. Soc., 1974, 96, 1932.
 ⁶ T. J. Petcher and H. P. Wezer, J. C.S. Chem. Comm., 1974, 697.
 ⁷ N. Otake, M. Vernurk, H. Kinschi, S. Sato, and Y. Saito, L.O.S. Chem. Comm., 1974, 697.

- ⁷ N. Otake, M. Koenuma, H. Kinashi, S. Sato, and Y. Saito, J.C.S. Chem. Comm., 1975, 92.

¹ H. Hauptman, Acta Cryst. (A), 1974, 30, 472.